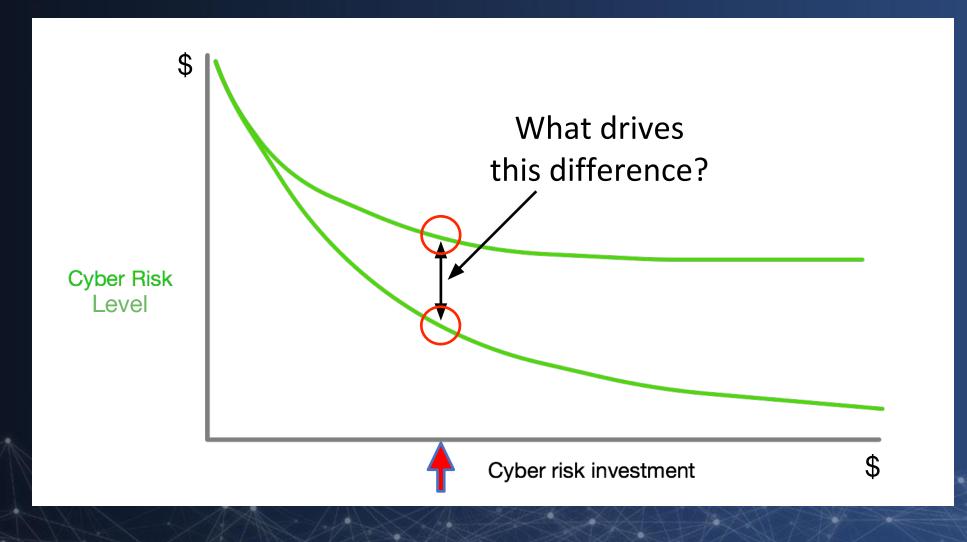


The evolution of our profession

Jack Freund FAIR Institute

The Epochs of Information Security

	Mainframe 1960's - 1980's	PC 1980's - 1990's	Internet 1990's - 2000's	Cybersecurity 2000's - 2010's	Cyber Risk 2010's —>
Threat Landscape	 Employees (error & maliciousness) 	• PC Viruses	 Network-enabled attacks Online vandalism 	Cyber criminalsHactivists	Nation-state actorsArtificial intelligence
Tools	CA Top SecretRACF	PoliciesAntivirus	 Firewalls Vuln scanners Pen-testing Awareness trng. 	 MSSPs & SIEMs Forensics Industry regulations 	 Red/Blue teams Global regulations ML & Artificial intelligence
Role / Perception	• IT worker bee	• Distinct job in IT	 Distinct infosec department in IT Birth of the CISO Office of "NO" 	 Enterprise programs Separate budgets Board reporting 	 Board priority Risk manager Business enabler ERM function
Measurement & Decision Support	• SLA's	Mental modelsOrdinal scales	Mental modelsOrdinal scalesFUD	 Mental models Ordinal scales Maturity models FUD 	Economic analysisData science



What is the cost of a \$5,000,000 cybersecurity program*?

*Salaries, benefits, services, technologies, etc.

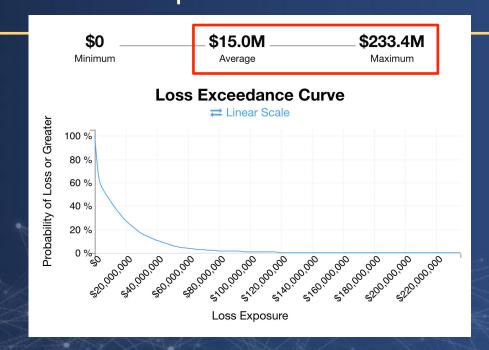
Why it matters...

Decisions

How cost-effectively we apply our risk management resources.

Prioritization example

- A vulnerability scanner identifies a web application with a SQL injection weakness. The scanner's scoring model (CVSS) labels the weakness as "critical".
- Software development resources are redirected from other work to correct this weakness.
- However, this application is: a) not Internet-facing, b) requires authentication in order to find and exploit the SQL injection flaw, and c) doesn't have access to sensitive information.
- If the organization had postponed remediation, it is extremely unlikely to experience a significant loss event. Therefore, resources could have been better applied to other, higher-risk concerns.


Prioritization example

An audit discovered that privileges are not consistently being updated for user accounts with access to a customer service application containing credit card numbers.

A security assessment determined that the organization was unlikely to be able to identify when a cyber criminal breaches its network perimeter.

Cost-benefit example

A risk reduction solution was identified that was going to cost \$750k in year 1, and approx. \$300k yearly thereafter.

A security assessment determined that the organization was unlikely to be able to identify when a cyber criminal breaches its network perimeter.

Focus example

- The "cloud"
- E-mail
- Reputation
- Phishing
- Ransomware
- Internet of things (IoT)
- Insiders
- Patching
- Shadow IT
- Technology debt

What is expected to happen when top risks have been identified?

Some "simple" questions...

- How much more risk does the highest "high" represent than the lowest "high"? (And do we even agree on which one is highest?)
- How much more risk does the lowest "high" represent than the highest "medium"?
- How much risk is there in aggregate?
- Why are the lines drawn where they are?

Are these reasonable questions? How would you defend your responses?

The risk landscape in a nutshell...

Dynamic

Limited Resources

Which means...

Organizations must be very good at prioritizing their cyber risk problems and solutions.

- The future of cybersecurity is cyber risk management
- Cyber risk management is inherently quantitative, requiring economically-based prioritization and cost-benefit analyses

Your bottom line...

Questions?